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J. R. Dorfman 1 and M. H. Ernst 2 

Received April 17, 1989 

The time displacement operator is described for a system of hard-sphere par- 
ticles. We show how to avoid needing a representation for this operator in 
unphysical regions of phase space, and how to construct a useful representation 
in terms of binary collision operators in the physical region. The various binary 
collision operators used for hard-sphere systems are derived for the case of a 
system of two spheres, and the results are generalized to N-particle systems. 
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Liouville operator. 

1. I N T R O D U C T I O N  

Recent developments in the kinetic theory of neutral gases and fluids with 
short-ranged forces have allowed a wide variety of different nonequilibrium 
phenomena to be described. For example, the short-, intermediate-, and 
long-time behavior of various time correlation functions can be calculated 
and the results compared with experiment or with molecular dynamics 
results. ~1'2) The glass-fluid transition is at present an area of study in which 
kinetic theory makes substantial contributions. ~3) The basis of kinetic 
theory is a very careful analysis of the dynamical events that can take place 
among small numbers of particles in infinite space or inside a container. In 
either case, one must have some model for the interaction of the particles, 
and, in the latter case, for their interactions with the walls of the container. 
In selecting such interaction models, one tries to simplify the dynamics as 

Dedicated to Prof. E. G. D. Cohen on the occasion of his 65th birthday. 
Institute for Physical Science and Technology, and Department of Physics and Astronomy, 
University of Maryland, College Park, Maryland 20742. 

2 Instituut voor Theoretische Fysica, Rijksuniversiteit, Utrecht, 3508 TA Utrecht, The 
Netherlands. 

581 

0022-4715/89/1100-0581506.00/0 �9 1989 Plenum Publishing Corporation 



582 Dorfman and Ernst 

much as possible without losing the essential physics of the phenomena 
under discussion. Under these circumstances, a hard-sphere model for the 
Particles that comprise the system seems very natural, provided one is not 
interested in effects due to attractive forces or to particles in contact over 
some period of time. The advantage of a hard-sphere model is that all 
dynamical events taking place among the particles in the system can be 
described by sequences of instantaneous binary collision separated by inter- 
vals of time in which all the particles are either moving freely or colliding 
with the walls. 

Despite the simplicity of this dynamics, the development of a useful 
mathematical description of it proved to be difficult. The basic problem is 
that statistical averages of dynamical quantities involve an integration over 
the phase space volume of an N-particle system. Such an integration 
includes regions where two or more hard-sphere particles overlap, and for 
such regions the dynamics is undefined. While it seems obvious that such 
physical situations can never occur, it was not at all obvious how to 
develop a mathematical formalism where such configurations never appear. 
This problem was carefully formulated and solved in 1969, with the 
development of a carefully defined binary collision expansion for the 
so-called N-particle time-displacement operatorJ 4) One of the remarkable 
points of the analysis was that the time displacement operator has to be 
used in conjunction with the configurational part of the N-particle 
equilibrium distribution function for hard spheres. Further, the precise 
structure of the binary collision operator depends on whether or not the 
time-displacement operator acts on the equilibrium distribution function 
together with the dynamical variables of interest. 

The purpose of this paper is to clarify these various issues, to show for 
a simple example involving two particles in infinite space how the various 
hard-sphere binary-collision operators arise naturally, and how they are to 
be used. Our aim is to provide a clear derivation so that other workers 
interested in nonequilibrium hard-sphere dynamics will be able to work 
easily and correctly with the appropriate binary-collision operators. It was 
at the urging of Prof. E. G.D. Cohen that we worked out this simple 
approach, and it has proved to be of value to other workers as well. 
Therefore, we are happy to dedicate this paper to Professor Cohen on the 
occasion of his 65th birthday. 

In Section 2 we discuss the time-displacement operator for hard 
spheres, and outline the problem of and approach to the proper representa- 
tion of these operators. In Section 3 we construct explicit representations of 
these operators for a simple system consisting of two hard spheres, and we 
discuss the generalization to N hard spheres in Section 4. 
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2. T I M E - D I S P L A C E M E N T  OPERATORS 

Time-dependent quantities of interest in statistical mechanics generally 
appear as statistical averages over an N-particle distribution function 
fu(F, t), which obeys the Liouville equation, or an equilibrium time- 
correlation function. In the former case we are led to consider integrals of 
the form 

( r ( t ) ) = f d r F ( r ) f u ( r , t ) = f d r f u ( r , o ) F ( r ( t ) )  (2.1) 

and in the latter, integrals of the form 

(A(0) B(t) )eq = f drLq(r) A(F) B(r(t)) 

= [ drLn(r) B(r) A(F(-t)) (2.2) 

In Eqs. (2.1) and (2.2), the angular brackets denote ensemble averages, F 
is a point in N-particle phase space, F(F), A(F), and B(F) are dynamical 
functions of the phase variables, and t is the time. We have used Liouville's 
theorem and the stationary properties of the equilibrium ensemble averages 
to obtain the second equality in Eqs. (2.1) and (2.2), respectively. It is often 
convenient to express time-dependent dynamical quantities such as those 
appearing in the integrand in Eqs. (2.1) and (2.2) in terms of a time- 
displacement operator S,(F) that has the following properties: 

S ,( F) F( F) = F( F( t ) ) (2.3a) 

fu(r,  t)= S ,(r) fu(r,  O)=fN(F(--t), 0) (2.3b) 

for any dynamical function F(F), and for solutions of the Liouville equa- 
tion, fu(F, t), with initial value fu(F, 0). Here F(t) represents the phase 
point that evolves in time t starting at the point F. Similarly, F ( - t )  is the 
phase point that evolves to F after a time t. For systems of monatomic 
particles that interact with two-body, central forces determined by a 
continuous potential function ~b(r), the time-displacement operator has a 
very simple form, 

S,(F) = e 'L(r) (2.4) 

where L(F) is the Liouville operator 

L(F) = Lo(r) + L,(r) (2.5) 

822/57/3-4-ll 
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with 

and 

N 

Lo(r) = ~ E,. V~, (2.6a) 
i = ~  m 

Here ri, Pi are the position and momentum of particle i, respectively, and 
rij= Ir~-rjl, and we have assumed that there are N particles, each with 
mass m. For continuous potentials, there are no obvious difficulties in 
defining S• for all points F = ( r l ,  pl ..... rN, PN), except for sets of 
measure zero, where the centers of two or more particles coincide. 

However, if we consider systems of hard-sphere particles, the problems 
of defining S• become clear. That is, if we suppose that the particles 
are all hard spheres with diameter a, then S• is not defined for all 
points F where r~ < a for any i and j. We can avoid ever having to consider 
these regions of configuration space if we can manage to consider 
WN(IN ) S • where 

{01 if <a foranyi, j WN(F) = r~j (2.7) 
otherwise 

By examining the integrand appearing in the right-hand sides of Eqs. (2.1) 
and (2.2) we see that this is possible in Eq. (2.1) if the initial N-particle dis- 
tribution function fN(1 N, 0)  is proportional to WN(F ), and it is possible in 
Eq. (2.2) because feq(F) is proportional t o  WN(IN ). This latter point follows 
because 

N 

f e q ( / ' )  ----- Cwe -~uN(r) = C'N Ww(F) [I ffo(Pi) (2.8) 
i = 1  

Here CN and C~ are normalization constants containing the canonical 
partition function, ~0(P,) is the single-particle Maxwell-Boltzmann momen- 
tum distribution function, and HN(F ) is the Hamiltonian function for the 
system of N particles. The second equality on the right-hand side of 
Eq. (2.8) holds only for hard spheres, of course. 

Therefore, under the circumstances outlined above, we need only 
consider quantities of the form WN(I" ) S+_t(1Y" ) when computing statistical 
averages. In the next section we will find an explicit form for 
WN(F) S• for the simple case of two particles, and thereby define the 
binary collision operators T• j) for two particles i and j. We will also 
show how the quantity S• WN(I" ) c a n  be defined by constructing the 
adjoint of WN(F) S T ~(F). 
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3. THE B I N A R Y - C O L L I S I O N  O P E R A T O R S  

In order to develop a useful representation of the time-displacement 
operator for hard spheres, we consider first the case of two particles and 
study the quantity W(1, 2) St(i, 2), where 

W(1, 2) = J'0 if rl2<a (3.1) 
otherwise 

and where St(I, 2) is the time-displacement operator for a system of two 
hard spheres. Rather than consider this quantity directly, it is more con- 
venient when visualizing the geometry of hard-sphere motion to eliminate 
the trivial region of two-particle phase space where the spheres do not 
collide, and where no questions of definition of S,(1, 2) arise. Therefore, the 
quantity of interest to us is I,(1, 2)F 

I,(1, 2 ) F =  W(1, 2)[St(l ,  2) - S~ 2)] F(rl ,  pl, r2, P2) (3.2) 

where F(r~, p~, r2, P2) is some arbitrary function, and S~ 2) is a free- 
particle time-displacement operator that acts on F to produce 

S~ pz)=F(rl +vlt ,  pl, r2+Vzt, p2)=etr~ (3.3) 

for all phases of particles 1 and 2, and vi= pi/m. To compute/~(1, 2)F  we 
set up a coordinate system at the center of particle 2, with z axis in the 
direction of v12 = Vl - v2 (Fig. 1). In this coordinate system the initial phase 
of particle 1 is located by the vector r12 , given by 

r12=r• +rll~ (3.4) 

where r• is the projection of r12 onto the plane through the origin per- 
pendicular to the z axis, ~ is a unit vector in the z direction, and rll is the 
projection of r12 onto the z axis. Here rll is a negative quantity. Since 
W(1, 2) ensures that I,(1, 2)F is only defined for phases where r12 > a, we 
have that 

I,(1, 2 ) F =  W(1, 2)[St(1 , 2 ) -  S~ 2 ) ] F =  0 

unless I r •  and - 7 - v ~ 2 t < r i B < -  7 (3.5) 

where ~ = (a 2 -  r2 ) v2. Therefore we may write 

It(l, 2 ) F =  O(a-- Ir• + v12t + rH) - O(y + rll)] 

x [F(rl(t), p,(t), r2(t), p2(t)) 

- -  F(r 1 + v~ tl, Pl, r2 + v2t, P2)] (3.6) 
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Fig. 1. 

r. NN~kV~z, 

2 1 U  

Collision cylinder for the (1, 2) binary collision. The z axis is in the direction of the 
relative velocity v a - v  2 = va2. 

Here O ( x ) =  1 if x > 0 ,  and O ( x ) = 0  for x < 0 .  Also, re(t), pi(t)  are the 
phases of particle i at time t, determined by the dynamics of two bodies. 
Using the fact that the derivative of O(x) is f (x) ,  and that particle 1 will 
collide with particle 2 at time ~* given by 

T * -  - - r l l - -7  (3.7) 
1)12 

we can compute  rl(t) ,  pl( t )  and r2(t), p2(t) in Eq. (3.6) and then express 
I t( l ,  2 ) F  as 

I,(1,2)F=O(a-lr• &lv121~(ru+v12v+T) 

x [F(r l  + v l v + v ~ ' ( t - v ) ,  p~, r2 +v2v  + v2*( t -z) ,  P2*) 

-- F(r  1 + v l t ,  Pl, r2 + v2t, P2)] (3.8) 
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Here (v*, v*) or (p*, p*) are the velocities or momenta of the two particles 
after the collision. They are given by 

v *  = p~' = v~ - (v12" 6 ) 6  ( 3 . 9 a )  
m 

v *  = p~' = v *  + (v12" 6)# ( 3 . 9 b )  
m 

Here g is a unit vector in the direction of the point of contact of particles 
1 and 2 at the instant of collision. In the coordinate system we are using 

1 
= -  Jr• - (a 2 - r2) ~/2 23 (3.10) 

a 

It is now obvious by inspection of the right-hand side of Eq. (3.8) that it 
can be expressed simply as 

s I,(1, 2 )F=  & S~ 2) T+(1, 2) S~,_r 2)F(rl ,  p~, r2, P2) (3.11a) 

where 

T+(1, 2 )=  [v1210(a - l r •  (3.1 lb) 

Here P~ is a substitution operator that replaces vl, v2 by v~', v* whenever 
these quantities appear to the right of it. The quantity T+(1, 2) is a binary 
collision operator. It can easily be transformed to the expression usually 
given in the literature, 

T+(l'2)=aa ~f, d61vt2"d16(af-r12)(P~-l) 
1 2 " ~ < 0  

(3.12) 

where d is the number of dimensions of the system. We have thus proved 
that 

W(1, 2) S:(1, 2) = W(1, 2) S~ 2) + dr S~ 2) T+(1, 2) S~ 2) 

(3.13) 

This expression can be further simplified if we note that 

T+(1,2)S~ 2) T+(1,2)=O for any r > 0  (3.14) 
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since the two hard spheres cannot collide more than once. Then Eq. (3.13) 
can be put in the form 

W(1,2) S,(1, Z)=W(1, Z)exp{tELo(1,2)+ T+(1,2)]} (3.15) 

Similarly, we can show that 

W(1,2) S , ( 1 , 2 ) = W ( 1 , 2 ) e x p { - t E L o ( 1 , 2 ) - T  (1,2)]} (3.16) 

where 
( ,  

T (1, 2) = a d - l |  d616,2.616(r12-af)(P,-1) (3.17) 
av 1 2 " # > 0  

Let us return to Eq. (3.13) and represent the streaming operator in 
(2.13) as 

S,(1, 2 ) =  S~ 2) + S ~ �9 T+(1, 2)S~ (3.18) 

where the asterisk denotes a convolution product, such that 

f . g =  dz f~gt_~= d~ ft_~g~ (3.19) 

We consider for the moment how the various terms on the right-hand side 
behave for different initial configurations of particles 1 and 2. We consider 
nonoverlapping configurations for which W(1, 2) = 1. Suppose there is no 
(1, 2) collision during the interval (0, t). Then S,(1, 2) reduces to S~ 2), 
and the second term on the right-hand side of Eq. (3.18) vanishes, since the 
particles are never in contact during the interval. Suppose instead that 
there is a (1, 2) collision during the interval. If we note that T+(1, 2) can 
be written 

r v T+(1, 2 ) =  T+ + T+ 

where T r denotes the first term on the right-hand side of Eq. (3.12) propor- 
tional to P~, and T v denotes the second term, without the Po, and the 
superscripts denote "real" and "virtual," respectively, then the right-hand 
side of Eq. (3.19) reduces to 

S,(1, 2)=S~ �9 T~(1, 2)S~ (3.20) 

as expected. That is, the "virtual" collision contribution to S ~ �9 TS ~ 
cancels the free streaming term S ~ and a correct description of the "real" 
(1, 2) collision remains. A similar description of S_,(1, 2) can be shown to 
hold as well. 
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To complete our discussion of the binary collision operators, we ask 
if there is any way to generate a binary collision operator representation of 
the time-displacement operator S,(1, 2) when it appears to the left of the 
function W(1, 2). This can in fact be given a positive answer in terms of the 
adjoint of well-defined operators. To do this, we consider the well-defined 
integral 

J,=fdxlfdx2g(1,2) W(1, Z)S_,(1,2)f(1,2) (3.21) 

where dXl dx2 = dr1 dpl dr2 dp2, and f and g are arbitrary functions. Now, 
using Eq. (3.16), we can express J, as 

J,=f dxl f dx2g(1,2) W(1, 2) 

x S~ drS~ T_(1,2)S~ ~)(1, 2) f(1, 2) (3.22) 

With the aid of the free-particle Liouville theorem, we can write the 
right-hand side of Eq. (3.22) as 

J r=  f dXl f dx2 {f(1, 2)[S~ 2)g(1, 2)W(1, 2)] 

f2 + dr [S~ 2) g(1, 2) W(1, 2)3 

x a a - l f , , 2 . e > o d e l v 1 2 " e ] a ( r 1 2 - a e ) ( P ~ 1 7 6  

(3.23) 

The integral involving the real collision, i.e., 

f dxl f dx2s d~ 

x [S~ 2) g(1, 2) W(1, 2)] [v12" g] 6(r12 - ae) ;'~ 

x S~ o(1, 2)f(1,  2) 

can be transformed to 

f dxl f dx2 f,,2.e<o d~ 

x f(1, 2) S~t_o(1 , 2) ]u ~ a] •(r12 --a6) P~ 
• S~ 2) g(1, 2) W(1, 2) 
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by means of the one-particle Liouville theorem, the identities 

dpl dp2 = dp~ dp* 

v ~ "  ~ = -(v1"2" ~) 

Dorfman and Ernst 

(3.24a) 

(3.24b) 

and finally relabeling the "starred" and "unstarred" momentum variables. 
Similarly, the integral involving the virtual collision 

f dx~f dx2f,~2.~>od~ 

x [S~ 2) g(1, 2) W(1, 2)] Ivy2" dl 6(r,2 - a8) S~ 2)f(1, 2) 

may be written as 

f dxl f dx2 fv12.,,<o d~ 

x f(1, 2)S~ 2)Jr,2" dl 3(r12 + a6) S~ 2) W(1, 2) g(1, 2) 

where we have let 6-~ -~,  and used the free particle Liouville theorem. 
Therefore, J, may be written 

J,= f dxl f dxzf(1, 2)[S~ 2)+ fo d'c S~t_ ~)(1, 2)T+(1, 2)S~ 2)] 

x W(1, 2) g(1, 2) (3.25) 

with the binary collision operator T+ defined as 

T+ = a a 1 ~ dd ]VI2" ~] [-(~(r12 - -  ad) Pc- 6(r12 + ad)] (3.26) 
Jv 12"~<0 

We may therefore conclude that S,(1, 2) W(1, 2) can be defined if we use 
the representation 

S~(1, 2) W(1,2)=(exp{t[Lo(1,2)+T+(1,2)]}) W(1, 2) (3.27) 

Here we have used the fact that the T+ operators can be shown to have 
the property 

T+(1, 2) S~ 2) T+(1, 2) = 0 for all T>0  (3.28) 

In a similar way we can define the operator S ~(1, 2) W(1, 2) by 

S ,(1,2) W(1,2)=(exp{-t[Lo-T (1,2)]})W(1,2) (3.29) 
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with 

T _ ( 1 , 2 ) = a  d - l ~  d61v12.61 [6(r12-af)  P~-6(r12+a6)]  (3.30) 
Jv 12-6>o 

This completes our discussion of the binary-collision operator 
representation of the time-displaced operators for a system of two hard 
spheres. In the next section we discuss the generalization to a system of N 
hard spheres, and make some general comments on the binary-collision 
expansion of the time-displacement operators for such systems. 

4. C O N C L U S I O N  

In the previous section we derived expressions for the two-body 
time-dependent operators appropriate for use either to the left or to the 
right of the configurational distribution function W(1, 2). These results 
immediately suggest the generalization 
operators of the form 

W(1,..., N) S_+,(1 ..... N ) =  W(1 ..... N)exp t--- 

and 

to  N-particle displacement 

ILo(N)+__~ T+_(i,j)]} (4.1) 
i < j  

N,  ,-expf+,LL0 N,+ N,} ,42  
i < j  

where T+(i,j) are given by Eqs.(3.12) and (3.17), and 7"+_(i,j) by 
Eqs. (3.26) and (3.30), with (1, 2) replaced by (i, j). It is not at all obvious 
that expressions (4.1) and (4.2) correctly represent the dynamics of N hard 
spheres moving in infinite space. However, this result can be established by 
means of a rather direct, but lengthy argument, which we outline briefly 
here. (4) 

Consider some arbitrary N-particle phase point F for which W(F)= 1, 
and some time interval t during which the particles collide in the sequence 
~1 at t*, ~2 at t*, and so on. Here ~i represents a particular pair of par- 
ticles. From the geometrical meaning of the T+ operator it follows that a 
proper representation of the time-displacement operator S+ is given by 

S+ = S  ~ �9 T+(cq)S ~ �9 T~+(~2)S ~ . . . .  T+(~n) S ~ (4.3) 

We need to prove that for this phase point, the representation of S§ given 
by Eq. (4.1) reduces to (4~ We proceed by an induction proof. First, we 
expand S+ in (3.11) in powers of T§ operators as 

_ o + ~  o o + ~ s o + , T + ( c Q S  o , T + ( f l )  S o (4.4) S+ - S +  S+ * T+(o~)S+ ... 
ct B 
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Now, for t < t* all but the first term on the right-hand side will vanish. 
Consider t > t* and rewrite Eq. (4.4) as 

S+ = R + ( e l ) + S ~  * T+(cq) R+(cq) (4.5) 

R+(~I)=S ~ + ~ S ~ * T+(fl) S ~ 

+ Z ~ S ~  * r+(fl)s~ * T+(7)S~ (4.6) 

that is, R+ (~1) consists of all of the terms in the binary collision expansion 
of S+ except those for which the first binary collision operator involves the 
pair cq. We now decompose T+(cq) in Eq. (4.5) into its real and virtual 
parts T~_(~I) and T+(~I) to write 

S+ = R + ( ~ ) + S ~  * T+(~I )R+(~I )§  ~ * T+(~I) R + ( ~ )  (4.7) 

As in the previous section, we can show that for t > t* the first and third 
terms on the right-hand side of Eq. (4,7) cancel each other and we obtain 

_ 0 T+(~I) R+(C~l), t > t *  (4.8) S+ - S+ * 

To complete the induction proof, we suppose t > t,_* 1 and that Eq. (4.4) 
reduces to 

S+--S+~ , T+(~I)so+ , T+(u2)sO+ ,...T+(c~,_~)R+(c~,_~) (4.9) 

Then rewrite R+(%_ ~) or 

R+(~.  1)= R + ( ~ . ) - S  ~ r + ( ~ . _ l )  �9 R+(~ ._  1)+ S ~ r+(~ . )  �9 R +(c~o) 

= R + ( ~ . ) +  S ~ r ~ ( ~ . )  �9 R + ( ~ . ) + S  ~ V ; ( ~ . )  �9 R + ( ~ . )  

-- s O  T + ( ~ n - 1 )  * R+(O~n 1) (4.10) 

Now for the phase point that we consider and for t > t*, the first and third 
terms on the right-hand side of (4.10) will cancel when substituted in (4.9), 
the fourth term will vanish, while the second term will give exactly what is 
needed to establish Eq. (4.3). Therefore, expressions (4.1) and (4.2) repre- 
sent the solution to the problem stated initially, to find a convenient 
representation of the dynamics of a system of hard spheres that can be used 
to explicitly compute quantities of interest for the statistical mechanics of 
irreversible processes. 

We mention in conclusion that Eqs. (4.1) and (4.2) form very con- 
venient starting points for the calculation of the transport properties of 
hard-sphere systems and they have been applied to a description of a broad 
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range of phenomena,  ranging from a study of Stokes'  law for a macro-  
scopic sphere in a hard-sphere fluid, (5) to a study of  the hard-sphere 
glass-fluid phase transition. (3~ It is, of course, of considerable interest to 
find a similarly convenient  representat ion of the time-displaced opera tor  for 
systems that  interact with continuous,  central potentials, for systems that  
interact with noncentral  forces, for molecular  systems, and so on. It is not  
clear whether such representations exist in general, but  various 
approximate  expressions can be very useful in many  instances. As a simple 
example, many  results obtained for hard-sphere systems can be easily 
generalized to apply to systems of  particles with short-ranged central forces 
in those cases where the durat ion of the binary collisions can be neglected, 
and where the gas is dilute enough so that  triple and higher order collisions 
can also be neglected (see, e.g., ref. 6). 

R E F E R E N C E S  

1. E. G. D. Cohen and I. M. de Schepper, in Fundamental Problems in Statistical Mechanics 
IV, E. G. D. Cohen and W. Fiszdon, eds. (Ossolineum, Wroclaw, 1978), p. 101. 

2. T. R. Kirkpatrick and J. R. Dorfman, in Moleeular Dynamics Simulations of Statistical 
Mechanical Systems, G. Ciccoti and W. Hoover, eds. (Plenum Press, New York, 1986), 
p. 260. 

3. C. F. W. G6tze, in Proceedings of  the NATO Advanced Study Institute on Amorphous and 
Liquid Materials, E. Ltischeu, G. Jacucci, and G. Fritsch, eds. (Reidel, Dordrecht, 1986). 

4. M. H. Ernst, J. R. Dorfman, W. R. Hoegy, and J. M. J. van Leeuwen, Physica 45:127 
(1969). 

5. H. van Beijeren and J. R. Dorfman, J. Stat. Phys. 23:335 (1980). 
6. J. R. Dorfman and E. G. D. Cohen, Phys. Rev. A 6:776 (1972). 


